Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Mol Sci ; 23(22)2022 Nov 12.
Article in English | MEDLINE | ID: covidwho-2110135

ABSTRACT

Methyltransferases (MTases) enzymes, responsible for RNA capping into severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are emerging important targets for the design of new anti-SARS-CoV-2 agents. Here, analogs of S-adenosylmethionine (SAM), obtained from the bioisosteric substitution of the sulfonium and amino acid groups, were evaluated by rigorous computational modeling techniques such as molecular dynamics (MD) simulations followed by relative binding free analysis against nsp16/nsp10 complex from SARS-CoV-2. The most potent inhibitor (2a) shows the lowest binding free energy (-58.75 Kcal/mol) and more potency than Sinefungin (SFG) (-39.8 Kcal/mol), a pan-MTase inhibitor, which agrees with experimental observations. Besides, our results suggest that the total binding free energy of each evaluated SAM analog is driven by van der Waals interactions which can explain their poor cell permeability, as observed in experimental essays. Overall, we provide a structural and energetic analysis for the inhibition of the nsp16/nsp10 complex involving the evaluated SAM analogs as potential inhibitors.


Subject(s)
COVID-19 Drug Treatment , S-Adenosylmethionine , Humans , S-Adenosylmethionine/pharmacology , S-Adenosylmethionine/metabolism , SARS-CoV-2 , Viral Nonstructural Proteins/metabolism , Methyltransferases/metabolism
2.
Molecules ; 27(18)2022 Sep 14.
Article in English | MEDLINE | ID: covidwho-2033067

ABSTRACT

The SARS-CoV-2 targets were evaluated for a set of FDA-approved drugs using a combination of drug repositioning and rigorous computational modeling methodologies such as molecular docking and molecular dynamics (MD) simulations followed by binding free energy calculations. Six FDA-approved drugs including, Ouabain, Digitoxin, Digoxin, Proscillaridin, Salinomycin and Niclosamide with promising anti-SARS-CoV-2 activity were screened in silico against four SARS-CoV-2 proteins-papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp), SARS-CoV-2 main protease (Mpro), and adaptor-associated kinase 1 (AAK1)-in an attempt to define their promising targets. The applied computational techniques suggest that all the tested drugs exhibited excellent binding patterns with higher scores and stable complexes compared to the native protein cocrystallized inhibitors. Ouabain was suggested to act as a dual inhibitor for both PLpro and Mpro enzymes, while Digitoxin bonded perfectly to RdRp. In addition, Salinomycin targeted PLpro. Particularly, Niclosamide was found to target AAK1 with greater affinity compared to the reference drug. Our study provides comprehensive molecular-level insights for identifying or designing novel anti-COVID-19 drugs.


Subject(s)
COVID-19 , Proscillaridin , Antiviral Agents/chemistry , Cysteine Endopeptidases/chemistry , Digitoxin , Digoxin , Drug Repositioning , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Niclosamide , Ouabain , Papain/metabolism , RNA-Dependent RNA Polymerase , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL